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ABSTRACT

Inverse heat conduction problem consists of
finding an initial temperature distribution from
the knowledge of a distribution of the tempera-
ture at the present time. Here we assume that
the associated boundary conditions are known.
The heat conduction problem backward in time
is a typical example of ill-posed problems in the
sense that the solution exists only for regular
functions of some kind describing the present
temperature distribution and also the solu-
tion is unstable for the present temperature
distribution function. Conventional numeri-
cal methods often suffer from instability of the
problem itself when high accuracy is intended
in the approximation. Our aim is to create
a meshless method which is applicable to the
ill-posed inverse heat conduction problem. We
construct a high order finite difference method
in which quadrature points do not need to have
a lattice structure. In order to develop our new
method we show a tool in using exponential
functions in Taylor’s expansion. From numeri-
cal experiments we confirmed that our method
is effective for solving two-dimensional inverse
heat conduction problem numerically subject
to mixed boundary conditions.

NOMENCLATURE

D domain in R2

L, Q matrices on RN

lj , l(x) vectors of RN

m dimension
N total number of quadrature points
N the set of natural numbers

n(x) outward unit normal on ∂Ω
P (ξ) polynomial in ξ
P (∂) differential operator
q̄ Neumann data
R the set of real numbers
u solution of the problem
u vector of approximate solution
uF final data
ū Dirichlet data
w(x) vector of weights
x, ξ points in Rm

x(j) the jth quadrature point
Z+ the set of non-negative integers
α multi-index
Γ a part of ∂Ω
∆ Laplacian
∆x1 lattice width in x1 direction
Ω domain in Rm

∂ gradient operator
∂Ω boundary of Ω

INTRODUCTION

We take a bounded domain D in R2 and a
space-time domain Ω = D × (0, T ) in R3 for
a final time T > 0, where D represents a heat
conductor. A point in the space-time domain
Ω is written by x = t(x1, x2, t) = t(x1, x2, x3)
for the sake of conciseness. We write Γd =
ΓB ∪ ΓF by using two surfaces ΓB = ∂D ×
[0, T ] and ΓF = D× {T} of the boundary ∂Ω.
The boundary ΓB moreover consists of surfaces
ΓB1 ⊂ ΓB and ΓB2 = ΓB \ΓB1. Then for given
Dirichlet data ū : ΓB1 → R, Neumann data
q̄ : ΓB2 → R and final data uF : ΓF → R, we
consider a problem to look for a function u(x)
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that satisfies

∂u

∂x3
= ∆u in Ω, (1)

u = ū on ΓB1,
∂u

∂n
= q̄ on ΓB2, (2)

and
u = uF on ΓF . (3)

Here the symbol ∆ denotes the Laplacian
∂2

∂x2
1

+
∂2

∂x2
2

. An outward unit normal of the

boundary ∂D at x is denoted by n(x) =
t(n1(x), n2(x), 0). We call the problem (1)–
(3) a two-dimensional backward heat conduc-
tion problem under the mixed boundary con-
ditions (2).

The backward heat conduction problem
is ill-posed in the sense that the solution
does not always exist for any final data
uF . It is known for one-dimensional back-

ward heat conduction equation
∂u

∂t
=

∂2u

∂x2

in [1] for 0 < x < 1, t ≤ T with
∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0 that the final data

u(x, T ) is required to belong to the function

space

{ ∞∑

k=0

ak cos kπx :
∞∑

k=0

e2k2π2T a2
k < +∞

}

for the existence of the solution u(x, t).
The backward heat conduction problem is

also ill-posed in the sense that the solution is
unstable for given final data uF [2]. As a mat-
ter of fact we illustrate instability of the prob-
lem: Let the domain D be (−π, π)× (−π, π).
We set ΓB1 = ΓB and ΓB2 = φ. We prescribe
the final data u

(l)
F (x) := e−2l2T sin lx1 sin lx2,

x ∈ ΓF and the boundary data ū(l)(x) = 0,
x ∈ ΓB for an l ∈ N . Then the exact so-
lution of the heat equation (1) is given by
u(l)(x) = e−2l2x3 sin lx1 sin lx2. We choose the
two L2 norms

‖u‖L2(Ω) :=
{∫

Ω

u(x)2dx

} 1
2

and

‖v‖L2(ΓF ) :=
{∫

D

v(x′, T )2dx′
} 1

2

for functions u : Ω → R and v : ΓF → R,
respectively, where x′ = t(x1, x2) ∈ D. The

solution can be estimated as follows.

‖u(l)‖2L2(Ω)

=
∫

Ω

(
e−2l2x3 sin lx1 sin lx2

)2

dx

=
∫ T

0

e4l2(T−x3)dx3

×
∫

D

(
e−2l2T sin lx1 sin lx2

)2

dx′

=
1

4l2

(
e4l2T − 1

)
‖u(l)

F ‖2L2(ΓF ). (4)

Since for any C > 0 we can choose l ∈ N

such that
1
2l

√
e4l2T − 1 > C, the inequal-

ity ‖u(l)‖L2(Ω) > C‖u(l)
F ‖L2(ΓF ) holds for any

C > 0. This means that the solution does not
depend on the final data continuously in the
L2-sense. Therefore the solution of the back-
ward heat conduction problem is unstable for
the final data.

In order to solve the backward heat conduc-
tion problem numerically, we consider an appli-
cation of conventional finite difference schemes.
For any time step size ∆x3 > 0 in the time
range [0, T ] and for any lattice widths ∆x1 > 0
and ∆x2 > 0 in each direction of x1 and x2 in
D, we know by the von Neumann condition [3]
that the following finite difference scheme, ex-
plicit backwards, approximating the equation
(1) is unstable.

u(x1, x2, x3)− u(x1, x2, x3 −∆x3)
∆x3

=
{

u(x1 −∆x1, x2, x3)− 2u(x1, x2, x3)

+u(x1 + ∆x1, x2, x3)
}

/∆x1
2

+
{

u(x1, x2 −∆x2, x3)− 2u(x1, x2, x3)

+u(x1, x2 + ∆x2, x3)
}

/∆x2
2. (5)

We notice that the following scheme, implicit
backwards, is also unstable.

u(x1, x2, x3)− u(x1, x2, x3 −∆x3)
∆x3

=
{

u(x1 −∆x1, x2, x3 −∆x3)

−2u(x1, x2, x3 −∆x3)
+u(x1 + ∆x1, x2, x3 −∆x3)

}
/∆x1

2

+
{

u(x1, x2 −∆x2, x3 −∆x3)

−2u(x1, x2, x3 −∆x3)
+u(x1, x2 + ∆x2, x3 −∆x3)

}
/∆x2

2.(6)
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We state a motivation to our research. There
are numbers of researches which challenge to
analyze ill-posed problems numerically. For ex-
ample, techniques are described in these re-
searches [4], [5] for making both discretiza-
tion error and rounding error arbitrarily small
by using the spectral collocation method and
an arbitrary precision arithmetic, respectively.
The backward heat conduction problem is
solved very precisely under no observation er-
rors by their techniques. However in the spec-
tral collocation method the Chebyshev-Gauss-
Lobatto points [6] are employed as quadrature
points for the inversion. Therefore it is diffi-
cult to apply the techniques to the problem on
a domain with curved boundaries. As an ap-
plicable method for engineering problems, we
propose a more flexible high order finite differ-
ence scheme instead which allows quadrature
points at arbitrary locations.

NOTATION

We introduce a set Z+ := {z ∈ Z : z ≥ 0}

and let Zm
+ =

m︷ ︸︸ ︷
Z+ ×Z+ × · · · ×Z+ , where Z

denotes the set of all integers. Then an element
α = (α1, α2, . . . , αm) ∈ Zm

+ is called a multi-
index. A symbol 0 denotes (0, 0, . . . , 0). For
the multi-index α ∈ Zm

+ , a few operations and
relations are defined in the following: A length
of α is defined by |α| = α1 + α2 + · · · + αm.
Let x = t(x1, x2, . . . , xm) be a vector in Rm.
We distinguish the above-mentioned length of
a multi-index | · | from the length of the vec-

tor |x| =

√
m∑

k=1

x2
k . A power of x is defined

by xα := xα1
1 xα2

2 · · ·xαm
m . A factorial of α is

defined by α! := α1!α2! · · ·αm!. A differential

symbol
∂|α|

∂xα
is meant by

∂α1+α2+···+αm

∂xα1
1 ∂xα2

2 · · · ∂xαm
m

=

∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂αm

∂xαm
m

operated to sufficiently

smooth functions. Setting ∂j =
∂

∂xj
and ∂ =

(∂1, ∂2, . . . , ∂m) formally, we write
∂|α|

∂xα
=

∂α.

FINITE DIFFERENCE APPROXIMATION

In this section, we introduce a finite differ-
ence approximation to the derivatives. Let u

be an analytic function defined on a convex
bounded domain Ω ⊂ Rm into R. Namely,
the function u can be expanded into the Tay-
lor series

u(y) =
∑

α∈Zm
+

(y − x)α

α!
∂αu(x), x, y ∈ Ω

(7)
in the sense of absolute and uniform conver-
gence for any compact subset of Ω. We take
a point x = t(x1, x2, . . . , xm) and N quadra-
ture points x(j) = t(x(j)

1 , x
(j)
2 , . . . , x

(j)
m ) for

j = 1, 2, . . . , N randomly in Ω. For real con-
stants aα for α in Zm

+ , we set a differential
operator P (∂) of order µ0 as

P (∂) :=
∑

α∈Zm
+

aα∂α , (8)

where aα = 0 for |α| > µ0 with some µ0 ∈
N . We consider approximating the value
P (∂)u(x) at the point x by using a linear com-
bination of values u(x(j)), j = 1, 2, . . . , N .
More specifically, by choosing weights wj(x) ∈
R, j = 1, 2, . . . , N appropriately, we try to
represent the value P (∂)u(x) as

P (∂)u(x) =
N∑

j=1

wj(x)u(x(j)) + ε(x; P (∂)u),

(9)
where ε(x; P (∂)u) denotes a discretization er-
ror. We call the approximation (9) a high
order finite difference approximation of P (∂)
with respect to the quadrature points x(j), j =
1, 2, . . . , N for larger N .

Concretely we can determine the weights
wj(x), j = 1, 2, . . . , N as follows. Substitut-
ing the operator (8) to the equality (9), we can
see that the left hand side of the equality (9)
becomes

P (∂)u(x) =
∑

α∈Zm
+

aα∂αu(x). (10)

From Taylor’s expansion (7) the first term on
the right hand side of the equality (9) becomes

N∑

j=1

wj(x)u(x(j)) =
N∑

j=1

wj(x)

×




∑

α∈Zm
+

1
α!

(x(j) − x)α∂αu(x)



 . (11)
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From relations (10) and (11), the error in the
equation (9) can be written as

ε(x; P (∂)u) =
∑

α∈Zm
+

{
aα

−
N∑

j=1

wj(x)
1
α!

(x(j) − x)α

}
∂αu(x).

In the conventional finite difference approx-
imation, weights wj(x), j = 1, 2, . . . , N are
given by a solution of the linear system

aα =
N∑

j=1

wj(x)
1
α!

(x(j)−x)α, |α| ≤ µ (12)

for the largest possible integer µ.
Here we take the following trick in order to

choose the weights: Let ξ(i), i = 1, 2, . . . , N
be vectors in Rm such that ξ(i) 6= ξ(j) for i 6= j.
Multiplied by (ξ(i))α and summed up for all
α ∈ Zm

+ , the equality (12) becomes

∑

α∈Zm
+

aα(ξ(i))α =
N∑

j=1

wj(x)

×




∑

α∈Zm
+

1
α!

(ξ(i))α(x(j) − x)α



 . (13)

Generally, the equality

∑

α∈Zm
+

1
α!

ξαxα =
∑

α∈Zm
+

m∏

k=1

1
αk!

ξαk

k xαk

k

=
m∏

k=1

∞∑
αk=0

1
αk!

ξαk

k xαk

k =
m∏

k=1

eξkxk

= eξ·x, x, ξ ∈ Rm (14)

holds. By the equality (14) and a poly-
nomial P (ξ) =

∑

α∈Zm
+

aαξα, ξ ∈ Rm, the

equality (13) is transformed into P (ξ(i)) =
N∑

j=1

wj(x)eξ(i)·(x(j)−x), or equivalently

P (ξ(i))eξ(i)·x =
N∑

j=1

wj(x)eξ(i)·x(j)
,

i = 1, 2, . . . , N. (15)

We set a column vector lj :=
t
(
eξ(1)·x(j)

, eξ(2)·x(j)
, . . . , eξ(N)·x(j)

)
=

(
eξ(i)·x(j)

)N

i=1
for j = 1, 2, . . . , N and

construct a matrix L = (l1, l2, . . . , lN ) =(
eξ(i)·x(j)

)N

i, j=1
. Moreover we set a diagonal

matrix Q :=
(
P (ξ(i))δij

)N

i, j=1
with Kro-

necker’s symbol δij and two column vectors

l(x) :=
(
eξ(i)·x

)N

i=1
and w(x) :=

(
wj(x)

)N

j=1
.

Then we can write the linear system (15) as

Ql(x) = Lw(x). (16)

Therefore the weights wj(x), j = 1, 2, . . . , N
are given by

w(x) = L−1Ql(x) (17)

provided that L is invertible. By using a vector
u :=

(
u(x(j))

)N

j=1
the high order finite differ-

ence approximation (9) is thus represented by

P (∂)u(x)
= tw(x)u + ε(x; P (∂)u)
= t

(
L−1Ql(x)

)
u + ε(x; P (∂)u). (18)

EXPONENTIAL INTERPOLATION
We characterize our high order finite differ-

ence approximation (9) by showing a relation
between an exponential interpolation and the
high order finite difference approximation.

Let a function ũ be a linear combination
of exponential functions and be equal to the
function u at each quadrature point x(j) for
j = 1, 2, . . . , N . More specifically, there exist
constants bi ∈ R, i = 1, 2, . . . , N such that

ũ(x) =
N∑

i=1

bie
ξ(i)·x = tl(x)b,

ũ(x(j)) = u(x(j)), j = 1, 2, . . . , N

with a vector b := (bi)
N
i=1. We call the

function ũ an exponential interpolation in u
at the point x(j), j = 1, 2, . . . , N . Since
u =

(
ũ(x(j))

)N

j=1
= (tljb)N

j=1 = tLb, the
coefficients of the linear combination become
b = tL−1u. Therefore the exponential interpo-
lation ũ can be written by

ũ(x) = t
(
L−1l(x)

)
u. (19)
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Now we operate P (∂) on both sides of the
formula (19). From the equality P (∂)l(x) =(
P (∂)eξ(i)·x

)N

i=1
=

(
P (ξ(i))eξ(i)·x

)N

i=1
=

Ql(x), we obtain

P (∂)ũ(x) = t
(
L−1Ql(x)

)
u. (20)

Furthermore, from an equality t
(
L−1Ql(x)

)
= t

(
L−1l(x)

)
t(L−1QL), the equation (20) be-

comes

P (∂)ũ(x) = t(L−1l(x))t(L−1QL)u.

We see from this expression and (19) that
the matrix P̂ := t(L−1QL) is a counterpart
to the differential operator P (∂) through the
exponential interpolation. In Figure 1 we il-
lustrate the equivalence of the matrix P̂ and
the differential operator P (∂) inside the space
ΛN := span

{
eξ(i)·x : i = 1, 2, . . . , N

}
.

�

�

���� � ��� 	 
�

�

����� � �����

� �
�����

� � !#"

$

Figure 1: Equivalence of P̂ and P (∂)

Here we illustrate an approximation of a
derivative numerically by using the exponen-
tial interpolation. From the equality (20), the
high order finite difference approximation (18)
is represented by

P (∂)u(x) = P (∂)ũ(x) + ε(x; P (∂)u). (21)

When the dimension m = 2, we randomly lo-
cate quadrature points x(j) ∈ (−0.5, 0.5) ×
(−0.5, 0.5), j = 1, 2, . . . , N and set ξ(i) =
x(i), i = 1, 2, . . . , N . We take a function
u(x) = sin 3x1 sin 3x2 and a differential oper-
ator P (∂) = ∆ the Laplacian. In Figure 2
the approximation P (∂)ũ(x) = t(L−1l(x))P̂u
for N = 100 and the derivative P (∂)u(x) =
−18 sin 3x1 sin 3x2 are presented by their con-
tour lines. We see that the approximation
agrees well with the true derivative. In fact,
the maximum error max

j=1, 2, ..., N
|P (∂)u(x(j)) −

P (∂)ũ(x(j))| is 7.0 × 10−2. From this numer-
ical example we can expect that the error in
the derivative is small in the high order finite
difference approximation.
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Figure 2: P (∂)ũ(x) (—) and P (∂)u(x) (- - -)

HIGH ORDER FINITE DIFFERENCE
METHOD

We use the finite difference approximation
(9) in our method to solve backward heat con-
duction problems (1)–(3) numerically.

Let quadrature points x(k), k = 1, 2, . . . , N
belong to the closure Ω̄ of the domain Ω. We
set differential operators

Pk(∂) :=





∂(0, 0, 1) −
(
∂(2, 0, 0) + ∂(0, 2, 0)

)
,

x(k) ∈ Ω,

I, x(k) ∈ ΓB1 ∪ ΓF ,

n1(x(k))∂(1, 0, 0) + n2(x(k))∂(0, 1, 0),
x(k) ∈ ΓB2,

and data

fk :=





0, x(k) ∈ Ω,
ū(x(k)), x(k) ∈ ΓB1,
q̄(x(k)), x(k) ∈ ΓB2,
uF (x(k)), x(k) ∈ ΓF ,

for k = 1, 2, . . . , N , where I denotes the iden-
tity operator. We restrict the domain Ω con-
sidered in the problem (1)–(3) onto the set of
quadrature points x(k), k = 1, 2, . . . , N to ob-
tain

Pk(∂)u(x(k)) = fk, k = 1, 2, . . . , N. (22)
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Let uj be an approximate value of the true
u(x(j)) for j = 1, 2, . . . , N . We set vectors
ξ(i) = ρx(i), i = 1, 2, . . . , N for a parameter
ρ > 0. Then we consider finding the approxi-
mate values uj , j = 1, 2, . . . , N from the given
data fk, k = 1, 2, . . . , N based on the equali-
ties (22).

Let k ∈ {1, 2, . . . , N} be fixed arbitrarily.
From the high order finite difference approxi-
mation

Pk(∂)u(x(k)) ≈
N∑

j=1

wkju(x(j)) (23)

we can calculate weights wkj , j = 1, 2, . . . , N
as follows. Since weights in the approxi-
mation (9) are determined as a solution of
the equation (15), we set weights wkj , j =
1, 2, . . . , N as a solution of the linear system

Pk(ρx(i))eρx(i)·x(k)
=

N∑

j=1

wkje
ρx(i)·x(j)

, (24)

i = 1, 2, . . . , N .

From the equations (22) and the approxima-
tion (23) it is suitable to find approximate val-
ues uj , j = 1, 2, . . . , N as the solution of the
linear system

N∑

j=1

wkjuj = fk, k = 1, 2, . . . , N. (25)

Setting a matrix W := (wkj)N
k, j=1 and two col-

umn vectors û := (uj)N
j=1, f := (fk)N

k=1, the
linear system (25) is represented by W û =
f . Therefore approximate values uj , j =
1, 2, . . . , N are given by

û = W−1f . (26)

We call the above method a high order finite
difference method.

NUMERICAL RESULTS
We apply the high order finite difference

method to the backward heat conduction prob-
lem (1)–(3).

Heat Conduction with a Fin
Let the domain D be {t(x1, x2) : x2

1 + x2
2 <

0.52}∪ (0, 1)× (−0.25, 0.25) and the final time

be T = 1. We set ΓB2 = {t(x1, x2, x3) ∈
∂Ω : x2

1 + x2
2 = 0.52} and ΓB1 = ΓB \ ΓB2.

The outward unit normal n(x) of ΓB2 is rep-
resented by t(2x1, 2x2, 0). For a parameter
y = t(y1, y2, y3) 6∈ Ω the function

G(x, y)

=
1

4π(x3 − y3)
Exp

[
− (x1 − y1)2 + (x2 − y2)2

4(x3 − y3)

]

with respect to x satisfies the heat conduc-
tion equation (1). For y = t(0, 0, −0.3) we
give the boundary data and the final data
exactly as ū(x) = G(x, y) at x ∈ ΓB1,

q̄(x) =
∂G

∂n(x)
(x, y) at x ∈ ΓB2, and uF (x) =

G(x, y) at x ∈ ΓF . Then we calculate nu-
merical solutions of the problem (1)–(3) by us-
ing the high order finite difference method for
N = 500 and ρ = 3.

We show the numerical solution and the ex-
act solution in Figure 3 at x3 = 0.5 and in Fig-
ure 4 at x3 = 0. At x3 = 0 the error of the
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Figure 3: Numerical(—) and exact(- - -)
solutions (x3 = 0.5)
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Figure 4: Numerical(—) and exact(- - -)
solutions (x3 = 0)
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numerical solution is err = 4.9×10−3. Accord-
ingly, for the problem in which the domain is
not rectangle, we can obtain the accurate nu-
merical solution.

Heat Conduction in a Square
Let the domain D be (−0.5, 0.5) ×

(−0.5, 0.5) and let the final time be T = 1.
We set boundaries ΓB1 = {t(x1, x2, x3) ∈ ∂Ω :
x1 = −0.5, 0.5} and ΓB2 = {t(x1, x2, x3) ∈
∂Ω : x2 = −0.5, 0.5}. For a parameter l ∈ N
the function

u(l)(x) = e−2l2x3 sin lx1 sin lx2

satisfies the heat conduction equation (1). We
prescribe the boundary data and the final data
exactly as ū(l)(x) = u(l)(x) at x ∈ ΓB1,

q̄(l)(x) =
∂u(l)

∂n(x)
(x) at x ∈ ΓB2, and u

(l)
F (x) =

u(l)(x) at x ∈ ΓF . Then we calculate numer-
ical solutions of the problem (1)–(3) by using
the high order finite difference method for the
number N = 500 of quadrature points.

In Figure 5 the distribution of quadrature
points is presented.
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Figure 5: Quadrature points

We show the exact solution and the numeri-
cal solution for ρ = 4 at x3 = 0 in Figures 6–8
for l = 1, 2, 3, respectively. Each error in the
numerical solutions is 1.6 × 10−4, 2.4 × 10−2,
and 8.2 respectively for l = 1, 2, 3, where error
is defined by err := max

j=1, 2, ..., N
|u(x(j)) − uj |.

We observe an increase in the error of the nu-
merical solutions as the parameter l becomes

large. In particular the error on the boundary
ΓB2 is larger than the error in the vicinity of
the boundary ΓB1.
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Figure 6: Numerical(—) and exact(- - -)
solutions(l = 1, x3 = 0)
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Figure 7: Numerical(—) and exact(- - -)
solutions (l = 2, x3 = 0)

In Figure 8 the difference between the nu-
merical solution and the exact solution is con-
siderably large. From the estimation (4) the
ratio between the solution u(l) and the final

data u
(l)
F is Cl =

1
2l

√
e4l2T − 1 = O

(
e2l2

l

)

with respect to L2 norm. For l = 2, 3 the ra-
tios are estimated as C2 ≈ 700 and C3 ≈ 107.
As a source of the large error in the numerical
solution for l = 3 we guess an accumulation
of round-off errors in the computational arith-
metic.
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Figure 8: Numerical and exact solutions
(l = 3, x3 = 0)

CONCLUSIONS
We considered a high order finite difference

method in order to solve the backward heat
conduction problem. The high order finite dif-
ference approximation is based on the idea that
the derivative of an unknown regular function
can be approximated with high accuracy by a
linear combination of values of the function at
quadrature points. Since we use the quadra-
ture points which can be chosen at arbitrary
locations, the method gains a meshless prop-
erty. It is shown that the approximation co-
incides with the derivative of the exponential
interpolation. In numerical experiments, two-
dimensional backward heat conduction prob-
lem was solved as three-dimensional problem
in the space-time domain. When magnifica-
tion of the solution to the final data is very
large, we guess that the numerical solution can
conceivably influenced by round-off errors. We
confirmed that our method is applicable to the
problem in the domain with curved boundary
under the mixed boundary conditions.
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